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In the absence of phase information, a variety of electron-density distributions is

consistent with the observed magnitudes. This ambiguity may be reduced

signi®cantly if the distribution values are restricted to 0 or 1, i.e. when the object

of search is an envelope rather than a continuous electron-density distribution.

The binarizing in both real (the grid-point density values) and reciprocal (the

phases) spaces allows the usual structure-factor equations to be replaced by a

system of linear inequalities with binary unknowns. A special computer

procedure is applied to obtain several sets of values, which satisfy or almost

satisfy these inequalities. The averaging of the found phase sets allows the ®nal

map to be calculated. The approach was tested with calculated and experimental

data for a known protein structure. The size of the grid for the envelope

calculation is at the moment the major limitation of the approach. Nevertheless,

even for a very small grid, some structure information can be extracted and used

as a starting point for further phase improvement or as a way to solve the

molecular replacement problem.

1. Introduction

Binary integer programming (BIP below) is an approach for

solving a system of linear inequalities in binary unknowns (0

or 1 in what follows). BIP methods have been demonstrated to

be extremely useful in a large number of applications, but they

have not been applied yet to the solution of the phase problem

in crystallography. This paper discusses the ways to reduce the

phase problem to a problem of BIP, to overcome methodo-

logical and technical dif®culties, and to use this powerful

method to solve crystallographic problems. The tests

described below have been done with protein data while the

approach does not depend on the size of the unit cell and the

complexity of the studied object.

Crystallographic problems are usually formulated either in

terms of real electron-density values or in terms of complex

structure factors. These two sets of variables are linked

unambiguously by a linear transformation (Fourier transform)

if the electron-density values in all points of the unit cell and

the full (in®nite) set of structure factors are considered. In

practice, the search is usually restricted to the density values

calculated in the nodes of some grid in the unit cell, and to

some subset of structure factors. The usual formulae for grid-

function values and calculated structure factors contain some

numerical errors, which can be neglected if the grid dimen-

sions are large enough and high-resolution diffraction data are

involved. However, the use of grids with a relatively small

number of divisions along the unit-cell axes may require

special caution.

Quite often, especially when working at low and middle

resolution, crystallographers are interested in the position and

the shape of the region with density values above a certain

level, i.e. in a binary function representing this region. At low

resolution, this function represents the part of the unit cell

occupied by protein molecules, namely a molecular mask or an

`envelope'. If the resolution increases, this binary function

may represent elements of the secondary structure or the trace

of the polypeptide chain. Replacing the object of search by a

binary mask has two important consequences. On the one

hand, the restriction of the values to 0 or 1 may enormously

reduce the number of possible solutions of the phase problem

(see x4 for examples). On the other hand, the equations

connecting the search values with the experimental structure

factors are no longer strictly valid and require some correc-

tions.

An attempt to restrict the density values to 0 or 1 is not

unusual for protein crystallography. This property is equiva-

lent to the condition

� r� � � �2 r� � for all r; �1�

which is in turn equivalent to the equations

F�h� � �1=Vcell�
P

h0�h00�h

F�h0�F�h00�: �2�

A straightforward consequence of the last equations is the

same tangent formula
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tan '�h� �
P

h0�h00�h F�h0�F�h00� sin�'�h0� � '�h00��P
h0�h00�h F�h0�F�h00� cos�'�h0� � '�h00�� ; �3�

which follows from the famous Sayre equations (Sayre, 1952)

and is extremely widely applied in crystallography. Therefore,

the use of the tangent formula may be considered to some

extent as an attempt to involve {0 or 1} restriction in phase

re®nement (Lunin, 1985). A direct binarization of the density

in the density-modi®cation procedures has been tried by

Cannillo et al. (1983). Another way to introduce binary

functions is to use wavelet-type approximations of density

distributions and to apply {0 or 1} restriction to the wavelet

coef®cients rather than to the density values (Lunin, 2000).

Originally, the electron-density values are linked to the

complex structure factors by linear equations. However, if

only the magnitudes of the structure factors are supposed to

be known, then the unknown phases and electron-density

values are connected with the magnitudes by non-linear

equations. These equations may still be considered as linear

for centric re¯ections. Here the phase may take one of only

two possible values, and phase uncertainty may be represented

by one additional binary variable linearly included in the

corresponding equations. For the acentric re¯ection, the phase

can take any value from 0 to 2�. In this case, one may accept

the approximation that the phase of the structure factor is

restricted to one of four possible values ��=4, �3�=4, and the

phase uncertainty may be coded by two additional binary

variables, which are linked linearly to the density values.

Being reduced to a BIP problem, the three-dimensional

phase problem presents a challenge to BIP methods owing to a

large number of unknowns, even when a relatively small grid

for density calculation is considered. For this large number of

variables, it is often not possible to compute an exact solution

of the BIP problem. Local search methods, like those realized

in the program WSATOIP (Walser, 1997, 1998), are a possible

way to overcome this dif®culty. This procedure begins the

search with some randomly generated start values for the

binary unknowns and then tries to improve the solution

locally. In general, the optimization does not result in the exact

solution but in an `improved' one, compared to the starting

point. Such a local search procedure may be combined with

the general approach of low-resolution phasing suggested last

decade (see Lunin et al., 2000, for a review). In this approach, a

large number of solutions found by a local search starting from

random starting points are averaged to get an approximate

answer. It must be noted that the phase solutions found by this

procedure may correspond to different choices of the origin

and enantiomer. Therefore, alignment of phases must be

performed before comparing or averaging different solutions

(Lunin & Lunina, 1996).

One more feature of crystallographic problems is that

usually the electron density possesses some crystallographic

symmetry, and not all grid values are independent. In this case,

either additional symmetry constraints may be applied or a

subset of independent variables may be identi®ed. The second

way has been used in our tests.

More details of the suggested approach are discussed below

and the results of the ®rst tests are presented.

2. The phase problem and binary integer programming

2.1. Basic equations

We start from the usual formulae that link a real electron-

density distribution to its complex structure factors:

��x� � �1=Vcell�
P

h2Z3

F�h� exp�ÿ2�i�h; x��; x 2 V; �4�

F�h� � R
V

��x� exp�2�i�h; x�� dx; h 2 Z3: �5�

Here, x � �x1; x2; x3�T and h � �h1; h2; h3�T represent real-

and reciprocal-space vectors, respectively, Vcell is the volume

of the unit cell V and Z3 are the vectors with integer coordi-

nates

Z3 � fh � �h1; h2; h3�T : h1; h2; h3 are integersg: �6�
Written in fractional coordinates x, the density distribution

��x� has a periodicity with integer periods along all three axes.

The structure factors F�h� � F�h� exp�i'�h�� do not reveal any

periodicity but fall exponentially when indices increase. If the

distribution ��x� displays the symmetries of a space group

ÿ � f�R�; t��gnsym
��1 :

��R�x� t�� � ��x� for all x and �; �7�
then the structure factors reveal the symmetry

F�RT
�h� � F�h� exp�ÿ2�i�h; t��� for all h and �: �8�

This latter equation implies the extinction conditions:

if RT
�h � h and �h; t��jmod1 6� 0 then F�h� � 0; �9�

and being coupled with Hermitian symmetry of the structure

factors implies the phase restrictions for centric re¯ections:

if RT
�h � ÿh then '�h� �  �h� or '�h� �  �h� � � �10�

with

 �h� � � h; tv� �: �11�

2.2. Grid functions and grid structure factors

Equations (4)±(5) link unambiguously the structure factors

to the electron-density distribution when the full in®nite set of

structure factors and density values in all points of the unit cell

are involved. In practice, the electron-density values are

calculated at some grid in the unit cell and the set of structure

factors is ®nite. Let M1;M2;M3 be the number of divisions

along the unit-cell axes. Let us suppose also that these

numbers are consistent with the symmetry, i.e. all symmetry

transformations leave the grid invariant. Let M �
diag�M1;M2;M3� stand for the diagonal matrix with the

diagonal formed by M1;M2;M3, � is the set of all grid points

in the unit cell and jMj � M1M2M3 is the total number of

these points:



� � fj � �j1; j2; j3�T : j1; j2; j3 are integers;

0 � j1 <M1; 0 � j2 <M2; 0 � j3 <M3g: �12�

We introduce the grid electron-density function f�g�j�g as a set

of values of the density distribution at the grid points:

�g�j� � � j1

M1

;
j2

M2

;
j3

M3

� �
� ��Mÿ1j�; j 2 �; �13�

and de®ne the grid structure factors by the inverse discrete

Fourier transform (IDFT):

Fg�h� � �1=jMj�P
j2�

�g�j� exp�2�i�h;Mÿ1j��; h 2 �: �14�

The discrete Fourier transform (DFT) may restore the grid

density function unambiguously from the grid structure

factors:

�g�j� � P
h2�

Fg�h� exp�ÿ2�i�h;Mÿ1j��; j 2 �; �15�

but the values of the density distribution in the intermediate

points cannot be retrieved.

The discrete Fourier transform formulae (14) and (15) are

de®ned primarily for the points of the set �, but they can be

extended to all integer vectors in Z3 supposing that f�jg and

fFg
hg are periodical functions with M1;M2;M3 periods along

the axes:

�g�j�Mk� � �g�j�; Fg�h�Mk� � Fg�h�; for every k 2 Z3:

�16�

The periodicity of the grid function is natural and re¯ects the

periodicity of an electron-density distribution in a crystal.

However, the periodicity of the grid structure factors is quite

different from the behaviour of the usual structure factors.

Other properties that are different for the grid and the usual

structure factors are the extinction conditions and the

restrictions for centric phases. Owing to the periodicity (16) of

the grid structure factors, these conditions have now the form:

if RT
� h � hjmodM and �h; t��jmod1 6� 0 then Fg�h� � 0; �17�

if RT
� h � ÿhjmodM then 'g�h� �  �h� � ��h; t��

or 'g�h� �  �h� � �: �18�

In particular, this means that not only is the Fg�0; 0; 0� term

real, but Fg�M1=2; 0; 0�, Fg�0;M2=2; 0�, Fg�0; 0;M3=2�, . . . ,

Fg�M1=2;M2=2;M3=2� are real too. Additionally, the grid

structure factors may be absent or reveal properties of centric

re¯ections if one of the indices is equal to half of the corre-

sponding period.

If the grid is ®ne enough (i.e. M1;M2;M3 are large), (5)

suggests the common way to calculate structure factors from a

model (Sayre, 1951; Ten Eyck, 1977), namely to calculate ®rst

the electron density at grid points and then to perform the

IDFT (14):

F�h1; h2; h3� �
Vcell

M1M2M3

X
j2�

�
j1

M1

;
j2

M2

;
j3

M3

� �
� exp 2�i

h1j1

M1

� h2j2

M2

� h3j3

M3

� �� �
� Vcell

jMj
X

��j� exp�2�i�h;Mÿ1j��

� VcellF
g�h�: �19�

Generally speaking, this formula is an approximate one and

the error may be signi®cant if the division numbers

M1;M2;M3 are small or at least one of the structure-factor

indices is large (close to half of the corresponding number of

grid points). Sometimes the error may be estimated from the

precise formula that connects the grid structure factors with

the usual ones (Ten Eyck, 1973):

VcellF
g�h� � F�h� � P

k2Z3

k 6�0

F�h�Mk�: �20�

If a Fourier synthesis of a ®nite resolution dmin is calculated at

the grid whose step is less than dmin=2, then all structure

factors in the sum on the right-hand side of (20) are supposed

to be zero. The formula (19) is therefore exact for ®nite

resolution syntheses calculated at ®ne enough grids.

2.3. The phase problem as a binary integer programming
problem

The main goal of this section is to derive equations or

inequalities that allow one to de®ne the grid electron-density

values f�g�j�g provided the structure-factor magnitudes fF�h�g
are known. Using formulae (14) and (20), one can write down

a system of linear equations de®ning the values of the grid

function f�g�j�g in the formP
j2�

cos�2��h;Mÿ1j���g�j�

� �jMj=Vcell�F�h� cos '�h� � Re R�h�; h 2 �P
j2�

sin�2��h;Mÿ1j���g�j�

� �jMj=Vcell�F�h� sin '�h� � Im R�h�; h 2 �;

�21�

where

R�h� � �jMj=Vcell�
P

k2Z3

k6�0

F�h�Mk�:

These equations are linear with respect to the grid density

values if both the magnitudes and phases (or the real and

imaginary parts) of the structure factors are supposed to be

known. However, if not only the density values but also the

phases are considered to be unknown, then the equations

become non-linear as the phases enter as an argument of

trigonometric functions.

The value of R�h� depends on magnitudes and phases of all

structure factors and is generally unknown. Therefore, equa-

tions (21) cannot be written in the precise form. The value

R�h� may be negligibly small if the grid is ®ne enough and if

the indexes h are relatively small in comparison with the grid
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dimensions. At the same time, it may be signi®cant if one of

the indices is close to M1=2, M2=2, M3=2.

In general, this expression can be estimated by the sum of

structure-factor magnitudes as

jR�h�j � �"1�h� � �jMj=Vcell�
P

k2Z3

k 6�0

F�h�Mk�: �22�

More sophisticated estimates will be discussed elsewhere. In

any case, if an estimate

jR�h�j � "1�h� �23�
exists, equations (21) may be replaced by a system of

inequalities that restrict the density values in a weaker form

but do not require the knowledge of all structure factors:

ÿ"1�h� �
P
j2�

cos�2��h;Mÿ1j���g�j� ÿ �jMj=Vcell�F�h�
� cos '�h� � "1�h�; h 2 �

ÿ"1�h� �
P
j2�

sin�2��h;Mÿ1j���g�j� ÿ �jMj=Vcell�F�h�
� sin '�h� � "1�h�; h 2 �:

�24�

The inequalities (24) contain the phase values '�h� that cannot

be determined directly in an X-ray experiment and are the

object of our search. The phases enter the inequalities in a

non-linear manner. However, if the re¯ection h is centric [i.e.

it satis®es the condition in (18)], then only two values of the

phase,  �h� or  �h� � �, with  being known, are possible,

and (24) may be written as

ÿ"1�h� �
P
j2�

cos�2��h;Mÿ1j���g�j� ÿ ��h��jMj=Vcell�F�h�
� cos �h� � "1�h�;

ÿ"1�h� �
P
j2�

sin�2��h;Mÿ1j���g�j� ÿ ��h��jMj=Vcell�F�h�
� sin �h� � "1�h�;

for centric h: �25�
Here, the phase ambiguity is represented by a new unknown

��h�, which takes one of the two values 1 or ÿ1 and which

enters into the inequalities in a linear way. The inequalities

(25) become linear f�g�j�g and f��h�g provided the structure-

factor magnitudes fF�h�g are known.

For acentric re¯ections, one may assume as usual that the

phase '�h� can take one of four values: ��=4, �3�=4. Under

this hypothesis, the inequalities become

ÿ"1�h� ÿ "2�h� �
P
j2�

cos�2��h;Mÿ1j���g�j� ÿ ��h��jMj=Vcell�
� F�h�2ÿ1=2 � "1�h� � "2�h�;

ÿ"1�h� ÿ "2�h� �
P
j2�

sin�2��h;Mÿ1j���g�j� ÿ ��h��jMj=Vcell�
� F�h�2ÿ1=2 � "1�h� � "2�h�;

for acentric h; �26�
where the unknowns ��h� and ��h� take one of the two values

1 or ÿ1, and enter the inequalities in a linear way. Here, "2�h�
re¯ects the error introduced by the sampling of the phase

value. It can be estimated by

"2�h� � �"2�h� � 2ÿ1=2�jMj=Vcell�F�h�: �27�
As a result, we get a system of linear inequalities (26) where

the unknowns are the values of the electron density at the grid

points f�g�j�g and where the additional variables ��h� and ��h�
represent phase ambiguity. These inequalities are weaker than

the initial equations but they reduce the phase problem to

linear integer programming, while initially the phase problem

is essentially non-linear.

2.4. Binary distributions and integer programming

The inequalities (25)±(26) do not solve the phase ambiguity,

as a lot of grid functions corresponding to differently phased

magnitudes may satisfy them (see x4.2). The number of

possible solutions may be reduced signi®cantly if it is supposed

in addition that all unknowns are binary variables. The

substitution of the search of the original density distribution

by the search of a binary function is not arti®cial because some

basic information obtained from crystallographic Fourier

synthesis is the shape of the region of high-density values and

not particular values of the electron-density distribution. An

exception are ultra-high resolution studies (Lecomte, 1999),

where the electron density itself is the subject of investigation.

The complexity of this binary function depends on the current

resolution. At very low resolution, this binary function (mask

function or envelope) presents the overall shape of molecules

Table 1
Quality of the approximation of the observed magnitudes by values calculated from binary maps.

The correlation coef®cient

CF �
P

h

�Fbin�h� ÿ hFbini��Fobs�h� ÿ hFobsi�
� P

h

�Fbin�h� ÿ hFbini�2 P
h

�Fobs�h� ÿ hFobsi�2
� �1=2

is presented for different resolution zones. The molecular volume de®nes the number of non-zero grid values. It was adapted for every grid to have the maximal
correlation coef®cient.

Resolution range (AÊ ) (number of independent re¯ections)

Grid (mol. vol., %) 16±1 (15) 12±1 (28) 8±1 (85) 5±1 (305) 4±1 (580)

6*6*6 (50) 0.32 0.39 ± ± ±
8*8*8 (35) 0.88 0.92 0. ± ±
10*10*10 (30) 0.68 0.73 0.68 ± ±
16*16*16 (20) 0.91 0.79 0.69 0.62 0.03



and their packing in the unit cell. At a middle resolution, some

elements of the secondary structure may appear (`detailed

envelope'), e.g. helices may by presented by cylindrical

regions. At higher resolution, the mask may show the trace of

the polypeptide chain and the position of the residues.

The problem appearing immediately with the introduction

of binary variables f�bin�j�g is that the X-ray experiment

provides magnitudes fFobs�h�g corresponding to a real electron

density and not to a binary function approximating it.

Nevertheless, tests show (see Tables 1 and 2 and Fig. 1) that

the correlation between initial (observed) structure factors

and those calculated from binary envelopes may be high

enough. So this problem may be overcome by appropriately

scaling the observed magnitudes (see Appendix A) and by

increasing the gaps "�h� in (25)±(26). The inequalities may

now be written as

ÿ"h ÿ cR
h �

P
j2�

aR
j zj � bR

h yR
h � ÿ cR

h � "h; h 2 �;

ÿ"h ÿ cI
h �

P
j2�

aI
j zj � bI

hyI
h � ÿ cI

h � "h; h 2 �;
�28�

where fzjgj2�, fyR
h ; yI

hgh2� are binary variables, which take 0 or

1 values only;

yR
h � ���h� � 1�=2; yI

h � ���h� � 1=2�;
�yR

h � yI
h for centric reflections�; �29�

aR
j � cos�2��h;Mÿ1j��; aI

j � sin�2��h;Mÿ1j��; �30�
bR

h � ÿ2�F�h� cos �h�; bI
h � ÿ2�F�h� sin �h�;

for the centric case; �31�
bR

h � ÿ2�F�h�2ÿ1=2; bI
h � ÿ2�F�h�2ÿ1=2;

for the acentric case; �32�
cR

h � ÿ�F�h� cos �h�; cI
h � ÿ�F�h� sin �h�;

for the centric case; �33�
cR

h � ÿ�F�h�2ÿ1=2; cI
h � ÿ�F�h�2ÿ1=2;

for the acentric case: �34�

� is a scale factor that reduces the observed magnitudes to a

`binary function scale' (see Appendix A), and the gap "h

re¯ects three kinds of errors, namely grid sampling errors

"1�h�, phase sampling errors "2�h� and errors due to replacing

the real density distribution by a binary function.

2.5. Symmetry restrictions

If the density distribution possesses a crystallographic

symmetry, then the corresponding grid structure factors

exhibit the symmetry (17)±(18) and the equations in (21)

corresponding to symmetry-related indices are linearly

dependent. So the number of equations in (21) and corre-

spondingly the number of inequalities in (28) may be reduced

by deleting the dependent ones.

The grid point values f�g�j�g are related by symmetry too. A

subset of independent values may be selected in this case, and

the inequalities may be expressed in these independent

unknowns by summation of the coef®cients in (28) corre-

sponding to symmetry-related points.

3. Solution of the BIP problem

Linear equations and inequalities in binary variables can be

solved by integer programming methods. The general form of

an integer linear programming problem is

maxfcTxjAx � b; x 2 Zng �35�

with a real matrix A of a dimension m � n and vectors c 2 Rn,

b 2 Rm, cTx being the scalar product of the vectors c and x. If

the system Ax � b includes the constraints 0 � x � 1, we get a

binary integer linear programming problem (BIP). A vector x�

in Zn with Ax� � b is called a feasible solution. If moreover,

cTx� = max{cTx|Ax � b, x 2 Zn}, then x� is called an optimal

solution and cTx� the optimal value. The inequalities (28) form

a particular case of general BIP problems as there is no

objective function Q�x� � cTx here and the aim is to ®nd all

(or at least some) feasible solutions. Additional constraints on

the density values may be incorporated by the appropriate

choice of an objective function.

Integer linear programming has been studied in mathe-

matics, computer science and operations research for more

than 40 years (Bockmayr & Kasper, 1998; Johnson et al., 2000).

A huge number of large-scale combinatorial problems can be
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Table 2
Map correlation coef®cient for phases calculated from binary maps.

The map correlation coef®cient

C' �
P

h

Fobs�h�2 cos�'bin�h� ÿ 'exact�h��
.P

h

Fobs�h�2

is presented for different resolution zones. The molecular volume de®nes the number of non-zero grid values. It was adapted for every grid to have the maximal
correlation coef®cient.

Resolution range (AÊ ) (number of independent re¯ections)

Grid (mol. vol., %) 16±1 (15) 12±1 (28) 8±1 (85) 5±1 (305) 4±1 (580)

6*6*6 (50) 0.93 0.74 ± ± ±
8*8*8 (35) 0.98 0.94 0.80 ± ±
10*10*10 (30) 0.98 0.96 0.90 ± ±
16*16*16 (20) 0.99 0.99 0.94 0.87 0.81
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naturally modelled and solved in this framework. Various

exact and heuristic solution procedures have been developed,

among them branch-and-bound, branch-and-cut, branch-and-

price, and local search. Many commercial and public domain

software packages are available in order to compute feasible

or optimal solutions.

In our test, we used an approach that combines local search

for the solution of BIP problems (Walser, 1997, 1998) with a

general strategy of low-resolution phasing developed recently

by Lunin et al. (2000). First, a set of random initial assignments

of values to the binary variables is generated. From every

initial assignment, one tries to ®nd a feasible solution of (28)

by local ¯ips of the binary variables. This is done by the

procedure WSATOIP (Walser, 1997, 1998). At each run, the

program will try to minimize a residual, which is de®ned on the

basis of (28) as

R �P
h

r
P

j

aR
j zj � bR

h yR
h ; cR

h ; "h

 !
� r

P
j

aI
j zj � bI

hyI
h; cI

h; "h

 !" #
:

�36�

Here

r�x; q; "� �
0 if ÿ"� q � x � q� "
xÿ �q� "� if x> q� "
�qÿ "� ÿ x if x< qÿ "

(
�37�

so that r�x; q; "� � 0 if the inequality ÿ"� q � x � q� " is

satis®ed and r�x; q; "� grows linearly with x otherwise (see Fig.

2). The program stops if the residual has been reduced to 0 (i.e.

a feasible solution has been found) or if a given maximal

number of ¯ips Nflip has been reached. So the result of a

particular run is not always a feasible solution but a ®nal

assignment where the initial residue has been reduced.

For every ®nal assignment, the phases corresponding to the

binary function fzfin
j gj2� are calculated and used together with

the observed magnitudes to obtain Fourier syntheses. The

calculated syntheses are aligned according to permitted origin

and enantiomer choices (Lunin & Lunina, 1996). Then they

are averaged to produce a single phase set. In this way, a

centroid phase value and an individual ®gure of merit are

de®ned for every re¯ection (Lunin et al., 2000).

4. Computer tests

The tests were performed with the Protein G data (Derrick &

Wigley, 1994). This small protein (61 residues) contains one

�-helix and one �-sheet. The protein was crystallized in

the space group P212121 with the unit-cell dimensions

34.9 � 40.3 � 42.2 AÊ . The complete low-resolution set of

experimental diffraction magnitudes was available. The phases

calculated from the re®ned atomic model were considered as

the exact ones.

4.1. Binary approximations of Fourier syntheses

The goal of the ®rst series of tests was to check how well

small-grid binary functions approximate magnitudes and

phases of structure factors. To get a binary approximation for

the chosen grid, the Fourier synthesis f�g�j�g was calculated

using the observed magnitudes and the exact phases. The

binary approximation values f�bin�j�g were set to 1 for the

given number K of points with highest synthesis values, and to

Figure 2
The penalty function used for the solution of the BIP problem.

Figure 1
Fragments of 4 AÊ resolution Fourier syntheses calculated for Protein G
with the observed magnitudes and phases: (a) calculated from the re®ned
atomic model; (b) calculated from the binary approximation on a
16*16*16 grid.



0 otherwise. The quality of the approximation depends on this

parameter K. Special tests were performed to determine

optimal K values for different grids. It was found that the

optimal ratio of the value K to the full number of grid points

(the one which maximizes the correlation) depends on the

synthesis resolution and decreases when the resolution

increases (Tables 1 and 2). The grid structure factors

fFbin�h� exp�i'bin�h��g were then calculated and their magni-

tudes and phases were compared to the true ones (Tables 1

and 2; Fig. 1). This test demonstrated that, even at surprisingly

small grids, a binary envelope may provide low-resolution

phases of a reasonable quality.

4.2. Resolving the phase ambiguity for binary functions

The goal of this test was to study to what extent the

condition `0 or 1' allows one to reduce the phase ambiguity.

An idealized situation was considered where the exact

magnitudes of the real and imaginary parts of the binary

structure factors,

A�h� � jFbin�h� cos 'bin�h�j; B�h� � jFbin�h� sin 'bin�h�j;
�38�

were supposed to be known. In this case, the grid values satisfy

the equationsP
j2�

cos�2��h;Mÿ1j���g�j� � ��h�A�h�; h 2 �;P
j2�

sin�2��h;Mÿ1j���g�j� � ��h�B�h�; h 2 �;
�39�

where the unknowns ��h� and ��h� take one of the two values

1 or ÿ1.

The equations (39) have a solution for any particular choice

of right-hand values (given by the Fourier transform of these

values). So if the grid function is allowed to take any real

values, then the known magnitudes fA�h�;B�h�g do not de®ne

the solution uniquely. Any permutation of signs of ��h� and

��h� will result in a solution of (39) possessing the same

magnitudes fA�h�;B�h�g. It may be expected that this is not

the case if binary restrictions are added for the unknowns

f�g�j�g:
�g�j� � f0 or 1g: �40�

Now an arbitrary choice of signs ��h� and ��h� may result in a

solution of (39) that does not satisfy the condition (40). So the

binary restrictions may reduce signi®cantly the freedom of the

choice of signs and thus may solve the phase problem (or, at

least, reduce the phase ambiguity).

4.2.1. 6*6*6 test. In this test, a binary approximation

f�bin�j�g for Fourier synthesis (for Protein G) was constructed

at the grid 6*6*6. In this approximation, 50% of the points got

the value 1. The corresponding grid structure factors (14) were

calculated and the magnitudes (38) were substituted into (39).

100 runs of the program WSTAOIP were performed with

random starts to solve (39), supposing that the restriction (40)

held. The maximal number of ¯ips was set to 50000 (the

default value of the program). One run took about 2 min on a

Pentium III/500 PC.

In this test, 27 out of 100 runs resulted in a non-zero residual

(36), i.e. a solution of (39) was not found. The other 73 runs

gave in 37 cases a solution equivalent to the true solution

f�bin�j�g, while 36 runs resulted in alternative solutions that

were equivalent between themselves but not equivalent to the

true solution. As usual, we say that the solutions are equivalent

if they are related by a permitted origin/enantiomer trans-

formation. Furthermore, in our case the solutions f�g�j�g and

f1ÿ �g�j�g must be considered as equivalent as they result in

the same magnitudes of structure factors and have the same

number of non-zero values (Lunin & Lunina, 1996).

4.2.2. 8*8*8 test. The same tests were performed at the grid

8*8*8 (128 independent grid points). The maximal number of

¯ips was increased to 250000 because the default value was

found to be too small to ®nd a solution. Now one run took

about 30 min.

20 from 100 runs resulted in a non-zero residual while all

the other 80 runs resulted in solutions equivalent to the true

one. So when using this grid the binary restriction (40) has

eliminated all alternative solutions of (39) corresponding to

permutation of the signs of ��h� and ��h�.
4.2.3. 10*10*10 test. In this test (250 independent grid

points), the maximal number of ¯ips was increased to

10000000 because it was not possible to ®nd a solution with a

smaller number of ¯ips. Such a large number of trials in the

local search procedure required about 70 h of CPU for one

run on a Pentium III/500 PC, so that only a small number of

runs was performed. In this test, three from ®ve runs resulted

in a residual 0 and their results were equivalent to the true

solution.

4.3. The use of binary magnitudes

In a more realistic situation, the estimates (38) may be

available for centric re¯ections only, while for acentric

re¯ections only the value �A�h�2 � B�h�2�1=2 of the magnitude

of the complex structure factor may be assumed to be known.

The goal of the next test series was to study how such

uncertainty affects the solution. It was supposed in these tests

that the magnitudes fFbin�h�g of the binary structure factors

are known exactly, while the magnitudes of their real and

imaginary parts were estimated by

~A�h� � 2ÿ1=2Fbin�h�; ~B�h� � 2ÿ1=2Fbin�h�: �41�
A `gap' was introduced into equations (39) to take into

account the errors caused by this approximation:

ÿ0:5 ~A�h� � P
j2�

cos�2��h;Mÿ1j���g�j� ÿ ��h� ~A�h�
� 0:5 ~A�h�; h 2 �

ÿ0:5 ~B�h� � P
j2�

sin�2��h;Mÿ1j���g�j� ÿ ��h� ~B�h�
� 0:5 ~B�h�; h 2 �:

�42�

Owing to these approximations, we could not expect any

longer that the true solution satis®es (42) and the goal was to

make the residual value (36) as small as possible.

4.3.1. 6*6*6 test. All 100 runs of the WSATOIP program

resulted in non-zero residuals. The analysis of the found
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solutions showed that 47 of them were equivalent to the exact

solution, while 49 were equivalent to the alternative solution

found before (x4.2.1).

4.3.2. 8*8*8 test. All 100 runs resulted in a non-zero resi-

dual. Cluster analysis of the found solutions revealed a cluster

consisting of 19 solutions, all of which were equivalent to the

exact solution. Averaging all the 100 solutions gave the phases

with a map correlation coef®cient with respect to the exact

binary phases (Lunin & Woolfson, 1993) equal to 0.95.

4.4. The use of observed magnitudes

When working with real objects, binary magnitudes are not

known and must be estimated somehow. In this test, the set of

observed magnitudes was used to estimate the binary ones.

The scale factor was de®ned as discussed in Appendix A. The

grid 8*8*8 was chosen for this test as it allows one to solve BIP

problems in a reasonable time using the existing software. On

the other hand, the approximation of the binary structure-

factor magnitudes using the observed ones is poor at this grid

size. This may signi®cantly in¯uence the results. In order to get

more reliable results, more powerful BIP methods applicable

to larger grids are necessary. The gap in the inequalities (42)

was reduced to 25% of the estimated Fbin�h� value for acentric

structure factors, and to 20% for the centric ones. After 100

runs of WSATOIP with random initial assignments, the

obtained solutions were aligned and averaged. The found

average solution revealed essential features of the 12 AÊ

resolution synthesis and had the map correlation coef®cient

equal to 0.74 with respect to the exact phases. Fragments of

the obtained synthesis overlapped with the atomic model for

Protein G is shown in Fig. 3.

5. Conclusions

The theoretical part of this work shows how the crystal-

lographic phase problem can be reduced to the solution of a

system of linear inequalities in binary variables. The practical

tests with simulated and experimental protein data illustrate

the high potential of this new approach. Crystallographic

images found from such phasing can be used for further phase

improvement or as an important complementary tool for other

techniques like molecular replacement. In order to get images

of a higher quality, further work on integer programming

methods and their application in crystallography is currently

in progress.

APPENDIX A
Scaling of observed magnitudes to magnitudes of the
binary function

Let fB�j�gj2� be a binary function de®ned at a grid �, jMj is

the number of grid points and K is the number of non-zero

values B�j�: P
j2�

B�j� � K: �43�

Let fB̂�j�gj2� be corresponding structure factors

B̂�h� � �1=jMj�P
j2�

B�j� exp�2�i�h;Mÿ1j��; h 2 �; �44�

then

B̂�0� � �1=jMj�P
j2�

B�j� � K=jMj: �45�

Owing to the Parseval identity and to the property that

B�j� � 0 or 1,

jMjP
h2�

B̂�h�2 � P
j2�

B�j�2 � P
j2�

B�j� � K �46�

and P
h2�
h 6�0

B̂�h�2 � �K=jMj� ÿ �K=jMj�2: �47�

If the binary structure factors are supposed to be approxi-

mately proportional to some observed values

Figure 3
Fragments of BIP-phased Fourier synthesis superimposed with C� atoms
of the model for Protein G; several unit cells are shown to illustrate the
molecular packing. (a) Projection of the slice z = ÿ2: 2/40 containing
�-sheets; (b) projection of the slice z = 6: 14/40 containing �-helices. The
shown contour isolates 35% of the unit-cell volume (0.4� cut-off level).



B̂�h� � �F�h�; �48�

then the scale factor � may be estimated from (47) as

� � �K=jMj� ÿ �K=jMj�2
�P

h2�
h 6�0

F�h�2
24 351=2

: �49�

This work was done within the PRST Intellegence Logi-

cielle CPER±Lorraine and was supported by RFBR grants

00-04-48175 and 01-07-90317 and by the University of Nancy.

Programs O (Jones et al., 1991) and CAN (Vernoslova &

Lunin, 1993) were used to prepare map illustrations. The

authors thank L. Torlay for the computing assistance.

References

Bockmayr, A. & Kasper, T. (1998). INFORMS J. Comput. 10,
287±300.

Cannillo, E., Oberti, R. & Ungaretti, L. (1983). Acta Cryst. A39,
68±74.

Derrick, J. P. & Wigley, D. B. (1994). J. Mol. Biol. 243, 906±918.
Johnson, E. L., Nemhauser, G. L. & Savelsbergh, M. W. P. (2000).

INFORMS J. Comput. 12, 2±23.

Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta
Cryst. A47, 110±119.

Lecomte, C. (1999). Implications of Molecular and Materials Structure
for New Technologies, NATO ASI and Euroconference, Series E,
Applied Science, pp. 23±44. Dordrecht: Kluwer Academic
Publishers.

Lunin, V. Y. (1985). Acta Cryst. A41, 551±556.
Lunin, V. Y. (2000). Acta Cryst. A56, 73±84.
Lunin, V. Y. & Lunina, N. L. (1996). Acta Cryst. A52, 365±368.
Lunin, V. Y., Lunina, N. L., Petrova, T. E., Skovoroda, T. P.,

Urzhumtsev, A. G. & Podjarny, A. D. (2000). Acta Cryst. D56,
1223±1232.

Lunin, V. Y. & Woolfson, M. M. (1993). Acta Cryst. D49, 530±533.
Sayre, D. (1951) Acta Cryst. 4, 362±367.
Sayre, D. (1952). Acta Cryst. 5, 60±65.
Ten Eyck, L. F. (1973). Acta Cryst. A29, 183±191.
Ten Eyck, L. F. (1977). Acta Cryst. A33, 486±492.
Vernoslova, E. A. & Lunin, V. Y. (1993). J. Appl. Cryst. 26, 291±294.
Walser, J. P. (1997). Proceedings of the Fourteenth National

Conference on Arti®cial Intelligence and Ninth Innovative Applica-
tions of Arti®cial Intelligence Conference, AAAI 97, pp. 269±274.
IAAI 97, 27±31 July 1997, Providence, Rhode Island, USA.
Cambridge, MA: AAAI Press/The MIT Press.

Walser, J. P. (1998). Proceedings of the Fifteenth National Conference
on Arti®cial Intelligence and Tenth Innovative Applications of
Arti®cial Intelligence Conference, AAAI 98, pp. 373±379. IAAI 98,
26±30 July 1998, Madison, Wisconsin, USA. Cambridge, MA:
AAAI Press/The MIT Press.

Acta Cryst. (2002). A58, 283±291 Lunin et al. � Direct phasing 291

research papers


